Free-space optical delay line using space-time wave packets
نویسندگان
چکیده
منابع مشابه
Airy wave packets accelerating in space-time
Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation-invariance. A lesser-explored strategy for achieving optical selfsimilar propagation exploits the modification of the spatio-temporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lor...
متن کاملTime-reversal-symmetric single-photon wave packets for free-space quantum communication.
Readout and retrieval processes are proposed for efficient, high-fidelity quantum state transfer between a matter qubit, encoded in the level structure of a single atom or ion, and a photonic qubit, encoded in a time-reversal-symmetric single-photon wave packet. They are based on controlling spontaneous photon emission and absorption of a matter qubit on demand in free space by stimulated Raman...
متن کاملIncremental adaptive networks implemented by free space optical (FSO) communication
The aim of this paper is to fully analyze the effects of free space optical (FSO) communication links on the estimation performance of the adaptive incremental networks. The FSO links in this paper are described with two turbulence models namely the Log-normal and Gamma-Gamma distributions. In order to investigate the impact of these models we produced the link coefficients using these distribu...
متن کاملFree Space Optical Technologies
Free Space Optics (FSO), also known as Optical Wireless or Lasercom (i.e. Laser Communications), is a re-emerging technology using modulated optical beams to establish short, medium or long reach wireless data transmission. Most of the attention on FSO communication systems it was initially boost by military purposes and first development of this technology was dedicated to the solution of issu...
متن کاملFree-Space Optical Communication using Orthogonal Optical Angular Momentum Modes
A Multi-channel free-space optical (FSO) communications system based on orbital angular momentum (OAM)-carrying beams is studied. We numerically analyze the effects of atmospheric turbulence on the system and find that turbulence induces attenuation and crosstalk among channels. Based on a model in which the constituent channels are binary symmetric and crosstalk is a Gaussian noise source, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2020
ISSN: 2041-1723
DOI: 10.1038/s41467-020-19526-x